Autor: Quelle
ISBN-13: 9781158968107
Einband: Paperback
Seiten: 68
Gewicht: 153 g
Format: 259x187x2 mm
Sprache: Deutsch

Fehlermanagement

Bugtracker, Fehler, Falscher Freund, Fehlschluss, Filmfehler, Beurteilung eines Klassifikators, Benutzerschnittstelle, Toleranz, Fehlerkultur, Fehlerarten in Drehstromsystemen, Pentium-FDIV-Bug, Issue-Tracking-System, Menschlicher Fehler
 Paperback
20,10 €*
3
Quelle: Wikipedia. Seiten: 67. Kapitel: Bugtracker, Fehler, Falscher Freund, Fehlschluss, Filmfehler, Beurteilung eines Klassifikators, Benutzerschnittstelle, Toleranz, Fehlerkultur, Fehlerarten in Drehstromsystemen, Pentium-FDIV-Bug, Issue-Tracking-System, Menschlicher Fehler, Open Ticket Request System, Fehlertoleranz, Gitterfehler, Messabweichung, Freud'scher Versprecher, Mean Time Between Failures, Ausnahme, Ausfallrate, Redmine, Soft Error, Rechtschreibfehler, Delta-Analyse, Schaden, Roundup, Modellfehler, Jira, Alphafehler-Kumulierung, Irrtum, Tippfehler, Failure In Time, Bugzilla, Fehlerschranke, Mantis, Byzantinischer Fehler, Fehlerfreundlichkeit, Fehler in elektronischen Schaltungen, Technischer Defekt, Hardwarefehler, Versagen, Fehler-Ursachen-Analyse, Technopathogenologie, Kardinalfehler, Retrospectiva, Zielscheibenfehler, Fehlerdiagnose, Track+, Request Tracker, Metábasis eis állo génos, Mean Time To Failure, Klaffung, OsTicket, Fehlerhäufigkeit, Delta Debugging, Fehlersammelkarte, Lapsus, Konstruktionsfehler, Prozessdatenvalidierung, Entstörzeit, Absichtlicher Fehler, Bitfehler. Auszug: Bei einer Klassifizierung werden Objekte anhand von bestimmten Merkmalen durch einen Klassifikator in verschiedene Klassen eingeordnet. Der Klassifikator macht dabei im Allgemeinen Fehler, ordnet also in manchen Fällen ein Objekt einer falschen Klasse zu. Aus der relativen Häufigkeit dieser Fehler lassen sich quantitative Maße zur Beurteilung eines Klassifikators ableiten. Häufig ist die Klassifikation binärer Natur, d. h. es gibt nur zwei mögliche Klassen. Die hier diskutierten Gütemaße beziehen sich ausschließlich auf diesen Fall. Solche binäre Klassifikationen werden häufig in Form einer Ja/Nein-Frage formuliert: Leidet ein Patient an einer bestimmten Krankheit oder nicht? Ist ein Feuer ausgebrochen oder nicht? Nähert sich ein feindliches Flugzeug oder nicht? Bei Klassifikationen dieser Art gibt es zwei mögliche Arten von Fehlern: Ein Objekt wird der ersten Klasse zugeordnet, obwohl es der zweiten angehört, oder umgekehrt. Die hier beschriebenen Kennwerte bieten dann eine Möglichkeit, die Zuverlässigkeit des zugehörigen Klassifikators (Diagnoseverfahren, Feuermelder, Fliegerradar) zu beurteilen. Ja-Nein-Klassifikationen weisen Ähnlichkeiten zu statistischen Tests auf, bei denen zwischen einer Nullhypothese und einer Alternativhypothese entschieden wird. Ein Test soll kranke und gesunde Menschen voneinander unterscheiden. Jeder Mensch wird durch einen Punkt dargestellt, der links (krank) bzw. rechts (gesund) der schwarzen Linie liegt. Die Punkte im Oval sind die von dem Test als krank klassifizierten Menschen. Die Farben entsprechen den vier Fällen, die bei dieser Klassifikation auftreten können.Um einen Klassifikator zu bewerten, muss man ihn in einer Reihe von Fällen anwenden, bei denen man zumindest im Nachhinein Kenntnis über die "wahre" Klasse der jeweiligen Objekte hat. Ein Beispiel für so einen Fall ist ein medizinischer Labortest, mit dem festgestellt werden soll, ob eine Person eine bestimmte Krankheit hat. Später wird durch aufwändigere Untersuchungen fe
Autor: Quelle
ISBN-13 :: 9781158968107
ISBN: 1158968108
Erscheinungsjahr: 12.12.2014
Verlag: Books LLC, Reference Series
Gewicht: 153g
Seiten: 68
Sprache: Deutsch
Sonstiges: Taschenbuch, 259x187x2 mm